Outer automorphism groups of some ergodic equivalence relations

نویسندگان

  • Alex Furman
  • A. Furman
چکیده

Let R a be countable ergodic equivalence relation of type II1 on a standard probability space (X,μ). The group Out R of outer automorphisms of R consists of all invertible Borel measure preserving maps of the space which map R-classes to R-classes modulo those which preserve almost every R-class. We analyze the group Out R for relations R generated by actions of higher rank lattices, providing general conditions on finiteness and triviality of Out R and explicitly computing Out R for the standard actions. The method is based on Zimmer’s superrigidity for measurable cocycles, Ratner’s theorem and Gromov’s Measure Equivalence construction. Mathematics Subject Classification (2000). 37A20, 28D15, 22E40, 22F50, 46L40.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Product Actions with Relative Property (T) and Trivial Outer Automorphism Groups

We show that every non-amenable free product of groups admits free ergodic probability measure preserving actions which have relative property (T) in the sense of S. Popa [Pop06, Def. 4.1]. There are continuum many such actions up to orbit equivalence and von Neumann equivalence, and they may be chosen to be conjugate to any prescribed action when restricted to the free factors. We exhibit also...

متن کامل

Groups Not Presentable by Products

In this paper we study obstructions to presentability by products for finitely generated groups. Along the way we develop both the concept of acentral subgroups, and the relations between presentability by products on the one hand, and certain geometric and measure or orbit equivalence invariants of groups on the other. This leads to many new examples of groups not presentable by products, incl...

متن کامل

Groups Not Presentable by Products

In this paper we study obstructions to presentability by products for finitely generated groups. Along the way we develop both the concept of acentral subgroups, and the relations between presentability by products on the one hand, and certain geometric and measure or orbit equivalence invariants of groups on the other. This leads to many new examples of groups not presentable by products, incl...

متن کامل

Orbit equivalence rigidity and bounded cohomology

We establish new results and introduce new methods in the theory of measurable orbit equivalence, using bounded cohomology of group representations. Our rigidity statements hold for a wide (uncountable) class of groups arising from negative curvature geometry. Amongst our applications are (a) measurable Mostow-type rigidity theorems for products of negatively curved groups; (b) prime factorizat...

متن کامل

Exchangeable Measures for Subshifts

Let Ω be a Borel subset of SN where S is countable. A measure is called exchangeable on Ω, if it is supported on Ω and is invariant under every Borel automorphism of Ω which permutes at most finitely many coordinates. De-Finetti’s theorem characterizes these measures when Ω = SN. We apply the ergodic theory of equivalence relations to study the case Ω 6= SN, and obtain versions of this theorem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003